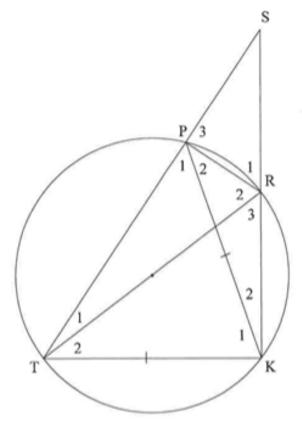
MAY / JUNE 2023

QUESTION 10

In the diagram, TR is a diameter of the circle. PRKT is a cyclic quadrilateral. Chords TP and KR are produced to intersect at S. Chord PK is drawn such that PK = TK.



10.1 Prove, giving reasons, that:

10.1.1	SR is a diameter of a circle passing through points S, P and R	(4)
10.1.2	$\hat{S} = \hat{P}_2$	(5)
10.1.3	ΔSPK ΔPRK	(3)

10.2 If it is further given that
$$SR = RK$$
, prove that $ST = \sqrt{6RK}$. (5)
[17]

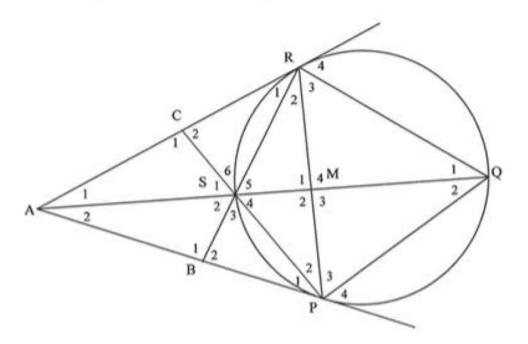
10.1.1	$T\hat{P}R=90^{\circ}$	[∠ in semi-circle]	✓S ✓R	
	SPR=90°	$[\angle$'s on a straight line]	√S	
	∴ SR is a diameter	[converse \angle in semi-circle]	✓R	
				(4)
	OR			(1)
	$T\hat{K}R = 90^{\circ}$	[∠ in semi-circle]	✓S ✓R	
	$SPR = 90^{\circ}$	$[ext \angle of cyclic quad]$	✓S	
	∴ SR is a diameter	[converse \angle in semi-circle]	✓R	
		OR		(4)
		[chord subtends a right angle]		

	I		1
10.1.2	$\hat{R}_1 = P\hat{T}K$	$[ext \angle of cyclic quad]$	✓S✓R
	$\hat{P}_1 = P\hat{T}K = \hat{R}_1$	$[\angle s \text{ opp equal sides}]$	✓S/R
	$\hat{S} + \hat{R}_1 = \hat{P}_1 + P_2$	$[ext \angle of \Delta]$	✓S✓R
	$\therefore \hat{S} = \hat{P}_2$	$[\hat{R}_1 = \hat{P}_1]$	
10.1.0	L CDV 1 DDV		(5)
10.1.3	In \triangle SPK and \triangle PRK $\hat{S} = \hat{P}_2$	[proved]	✓S
	$\hat{K}_2 = \hat{K}_2$		✓S
	$\mathbf{K}_2 = \mathbf{K}_2$	[common]	
	ΔSPK ΔPRK	$[\angle, \angle, \angle]$	✓S/R
			(3)
	OR/OF		
	In \triangle SPK and \triangle PRK		
	$\hat{S} = \hat{P}_2$	[proved]	✓S
	$\hat{K}_2 = \hat{K}_2$	[common]	✓S
	SPK =PRK	[sum of \angle s in Δ]	✓S/R
	Δ SPK Δ PRK		(3)
10.2	PK_SK	ADDV]	(0) ✓S
	$\frac{PK}{RK} = \frac{SK}{PK} \left[\Delta SPK \parallel \Delta PRK \right]$		
	$PK^2 = SK.RK$		
	$ST^2 = SK^2 + TK^2$	[Pythagoras]	✓S
	TK = PK	[Given]	
	$ST^2 = SK^2 + PK^2$		
	$ST^{2} = SK^{2} + SK.RK$		$\checkmark PK^2 = SK.RK$
	$ST^{2} = (2RK)^{2} + 2RK.I$	RK	✓SK = 2RK
	$ST^2 = 6RK^2$		\checkmark SK = 2KK \checkmark ST ² = 6RK ²
	$ST = \sqrt{6}RK$		
			(5)
			[17]

NOVEMBER 2023

QUESTION 10

In the diagram, PQRS is a cyclic quadrilateral such that PQ = PR. The tangents to the circle through P and R meet QS produced at A. RS is produced to meet tangent AP at B. PS is produced to meet tangent AR at C. PR and QS intersect at M.



Prove, giving reasons, that:

10.1	$\hat{\mathbf{S}}_3 = \hat{\mathbf{S}}_4$	(5)
10.2	SMRC is a cyclic quadrilateral	(4)

 10.3
 RP is a tangent to the circle passing through P, S and A at P
 (6)

 [15]

10.1	$\hat{S}_3 = P\hat{Q}R$	$[ext \angle of cyclic quad]$	✓ S ✓ R
	$\hat{R}_3 = P\hat{Q}R$	[∠s opp equal sides]	✓ S/R
	$\therefore \hat{S}_3 = \hat{R}_3$		
	But $\hat{S}_4 = \hat{R}_3$	$[\angle s \text{ in the same seg}]$	✓ S ✓ R
	$\therefore \hat{S}_3 = \hat{S}_4$		(5)
10.2	$\hat{R}_1 + \hat{R}_2 = P\hat{Q}R$	[tan chord theorem]	✓ S ✓ R
	$\hat{S}_4 = P\hat{Q}R$	[proved in 10.1]	
	$\therefore \hat{\mathbf{S}}_4 = \hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2$		✓ S
	SMRC is a cyclic quad	[converse ext \angle of cyclic quad]	✓ R (4)
			(4)
10.3	$\hat{S}_3 = \hat{R}_2 + \hat{P}_2$	$[ext \angle of \Delta]$	✓ S ✓ R
	$\hat{S}_4 = \hat{P}_1 + \hat{A}_2$	$[ext \angle of \Delta]$	✓ S
	$\therefore \hat{\mathbf{R}}_2 + \hat{\mathbf{P}}_2 = \hat{\mathbf{A}}_2 + \hat{\mathbf{P}}_1$		
	But $\hat{P}_1 = \hat{R}_2$	[tan chord theorem]	✓ S ✓ R
	$\therefore \hat{P}_2 = \hat{A}_2$		
	RP is a tangent to the circle	[converse tan chord theorem]	✓ R
		OR	
		[∠ between line and chord] OR	
		[converse alt seg theorem]	(6)
	OR		(0)
	1		1

In Δ MSP and Δ MPA			
\hat{M}_2 is common		✓ S	
AR = AP	[tans from same point]	✓ S/R	
$\hat{R}_1 + \hat{R}_2 = \hat{P}_1 + \hat{P}_2$	[∠s opp equal sides]	✓ S	
$\hat{\mathbf{S}}_4 = \hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2$	[proved in 10.2]		
$\therefore \hat{\mathbf{S}}_4 = \hat{\mathbf{P}}_1 + \hat{\mathbf{P}}_2$		✓ S	
$\therefore \hat{\mathbf{P}}_2 = \hat{\mathbf{A}}_2$	[sum of ∠s in Δ]	✓ S	
RP is a tangent to the circle	[converse tan chord theorem]	✓ R	
			(6)
			[15]