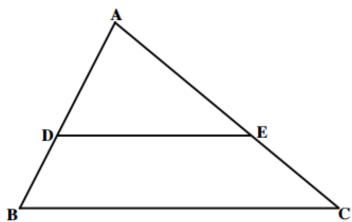
NOTES PROPORTIONALITY & SIMILARITY


GR 12 PROOFS

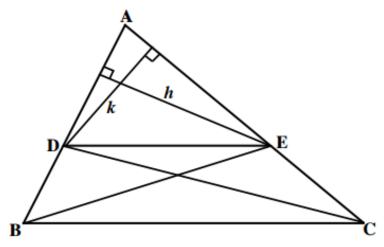
THEOREM 1

A line drawn parallel to one side of a triangle cuts the other two sides so as to divide them in the same proportion.

Given: DEIIBC

Required to prove: $\frac{AD}{DB} = \frac{AE}{EC}$

Proof:


In \triangle ADE, draw height h relative to base AD and height k relative to base AE. Join BE and DC to create \triangle BDE and \triangle CED.

$$\frac{\text{Area } \Delta \text{ADE}}{\text{Area } \Delta \text{BDE}} = \frac{\frac{1}{2} \cdot \text{AD} \cdot h}{\frac{1}{2} \cdot \text{BD} \cdot h} = \frac{\text{AD}}{\text{BD}}$$

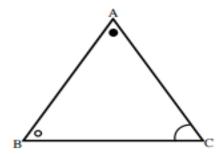
$$\frac{\text{Area } \Delta \text{ADE}}{\text{Area } \Delta \text{CED}} = \frac{\frac{1}{2} \cdot \text{AE} \cdot k}{\frac{1}{2} \cdot \text{EC} \cdot k} = \frac{\text{AE}}{\text{EC}}$$

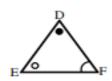
Now it is clear that Area ΔBDE = Area ΔCED (same base, height and lying between parallel lines)

$$\therefore \frac{\text{Area } \Delta \text{ADE}}{\text{Area } \Delta \text{BDE}} = \frac{\text{Area } \Delta \text{ADE}}{\text{Area } \Delta \text{CED}}$$
$$\therefore \frac{\text{AD}}{\text{BD}} = \frac{\text{AE}}{\text{EC}}$$

THEOREM

THEOREM 3


The corresponding sides of two equiangular triangles are in the same proportion and therefore the triangles are similar.


Given:

$$\hat{A} = \hat{D}$$
, $\hat{B} = \hat{E}$ and $\hat{C} = \hat{F}$

Required to prove:

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$

Proof:

On AB mark off AG = DE. On AC mark off AH = DF. Join GH.

In AAGH and ADEF:

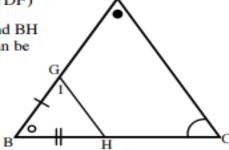
- (1) AG DE construction
- (2) Â D given
- (3) AH DF construction

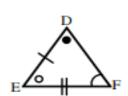
$$\therefore \hat{G}_1 = \hat{E}$$

But B = E given

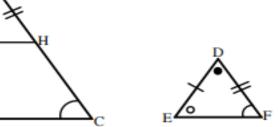
$$\therefore \hat{G}_1 = \hat{B}$$

:: GHIIBC corresponding angles equal.

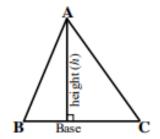

$$\therefore \frac{AB}{AG} = \frac{AC}{AH}$$

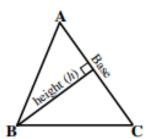

$$\therefore \frac{AB}{DE} = \frac{AC}{DF} \quad (AG = DE, AH = DF)$$

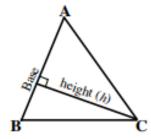
Similarly, by constructing BG and BH on AB and BC respectively, it can be proved that

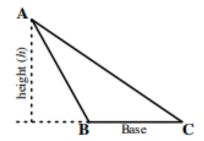

$$\frac{AB}{DE} = \frac{BC}{EF}$$

$$\therefore \frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$

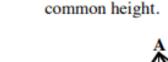

Therefore the triangles are similar.

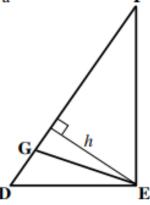



IMPORTANT CONCEPTS REQUIRED FOR TRIANGLE GEOMETRY


1. Area of Triangles

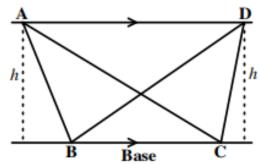
(a) The height or altitude of a triangle is always relative to the chosen base.

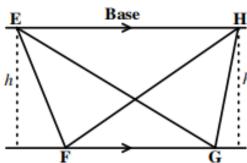




In all cases, the area of the triangles can be calculated by using the formula Area $\triangle ABC = \frac{1}{2}(base)(height)$.

(b) Two triangles which share a common vertex have a


Area
$$\triangle ABC = \frac{1}{2} \cdot BC \cdot h$$


Area
$$\triangle ACD = \frac{1}{2} \cdot CD \cdot h$$

Area
$$\triangle DEG = \frac{1}{2}$$
. DG . h

Area
$$\triangle FGE = \frac{1}{2} \cdot GF \cdot h$$

(c) Triangles with equal or common bases lying between parallel lines have the same area.

Area $\triangle ABC = Area \triangle DBC$

Area ΔEFH = Area ΔHGE

3. Cross multiplication techniques

Cross multiplication is useful when working with ratios.

Consider, for example, the ratios $\frac{3}{2} = \frac{6}{4}$

The following statements are true for the given ratio:

If $\frac{3}{2} = \frac{6}{4}$ then:

- (a) $\frac{2}{3} = \frac{4}{6}$ (invert both left and right)
- (b) $\frac{3}{6} = \frac{2}{4}$ (interchange 6 and 2)
- (c) $\frac{4}{2} = \frac{6}{3}$ (interchange 3 and 4)
- (d) $3 \times 4 = 6 \times 2$ (multiply 3 by 4 and 6 by 2)
- (e) $\frac{3\times4}{2} = 6$ (multiply 3 by 4 only)
- (f) $3 = \frac{6 \times 2}{4}$ (multiply 6 by 2 only)

In general, for the ratios $\frac{a}{b} = \frac{c}{d}$

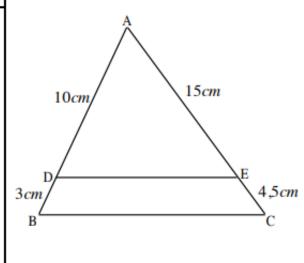
If $\frac{a}{b} = \frac{c}{d}$ then:

(a)
$$\frac{b}{a} = \frac{d}{c}$$

(b)
$$\frac{a}{c} = \frac{b}{d}$$

(b)
$$\frac{a}{c} = \frac{b}{d}$$
 (c) $\frac{d}{b} = \frac{c}{a}$

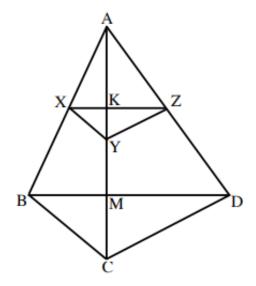
(d)
$$ad = bc$$


(e)
$$\frac{ad}{b} = c$$

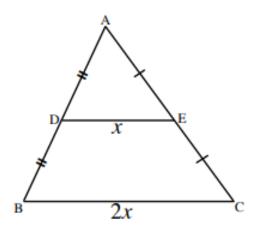
(e)
$$\frac{ad}{b} = c$$
 (f) $a = \frac{bc}{d}$

EXAMPLE 5

In $\triangle ABC$, AD = 10 cm, DB = 3 cm, AE = 15 cm and EC = 4,5 cm. Prove that $DE\parallel BC$.

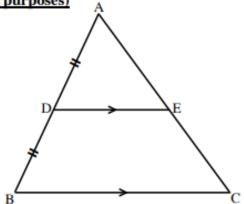

Statement	Reason
AD _ 10cm _ 10	
DB 3cm 3	
AE _ 15cm	
EC 4,5cm	
$\therefore \frac{AE}{EC} = \frac{15cm}{\frac{9}{2}cm}$	
$\therefore \frac{AE}{EC} = 15 \times \frac{2}{9}$	
$\therefore \frac{AE}{EC} = \frac{30}{9} = \frac{10}{3}$	
$\therefore \frac{AD}{DB} = \frac{AE}{EC}$	
∴ DEllBC	Line divides sides
	of ΔABC prop

EXAMPLE 6


In $\triangle ABC$ and $\triangle ACD$, XYIIBC and YZIICD. Prove that XZIIBD.

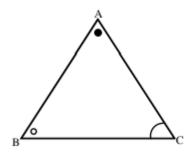
Statement	Reason
In $\triangle ABC$: $\frac{AX}{XB} = \frac{AY}{YC}$	Line one side of Δ
In $\triangle ACD$: $\frac{AZ}{A} = \frac{AY}{A}$	Line II one side of Δ
$ZD YC$ $\therefore \frac{AX}{XB} = \frac{AZ}{ZD}$ $\therefore XZ \parallel BD$	Line divides sides of ΔABD prop

THEOREM 2 (THE MIDPOINT THEOREM)


This theorem is a special case of Theorem 1. It states that the line segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to half the third side. If AD = DB and AE = EC, then $DE \parallel BC$ and BC = 2DE or $DE = \frac{1}{2}BC$.

THEOREM 2 CONVERSE (not for examination purposes)

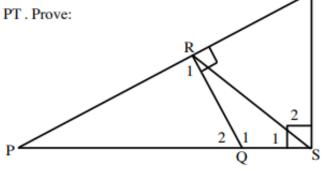
The line passing through the midpoint of one side of a triangle, parallel to another side, bisects the third side and is equal to half the length of the side it is parallel to.


If AD = DB and DEllBC, then AE = EC and BC = 2DE or DE = $\frac{1}{2}$ BC.

SIMILARITY THEOREMS

Two conditions must both be satisfied for two polygons to be similar:

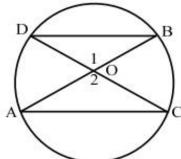
- (a) The corresponding angles must be equal.
- (b) The ratio of the corresponding sides must be in the same proportion.



EXAMPLE 8

In ΔPST , $TS \perp PS$ and $RQ \perp PT$. Prove:

- (a) ΔPRQIIIΔPST
- (b) RQ:PQ=ST:PT
- (c) $PR \cdot PT = PQ \cdot PS$



		¥	
	Statement	Reason	
(a)	Match the corresponding angles of ΔPRQ and ΔPST as follows and then prove the pairs of angles equal.		
	\hat{P} \widehat{P} Draw solid lines for each pair of corresponding angles that are equal. \hat{Q}_2 The dotted line indicates that the pair of angles are equal due to the sum of the angles of a triangle.		
	In ΔPRQ and ΔPST :		
	$\hat{\mathbf{P}} = \hat{\mathbf{P}}$	common	
	$\hat{R}_1 = \hat{S}_1 + \hat{S}_2 = 90^{\circ}$	given	
	$\hat{Q}_2 = \hat{T}$	sum of angles of Δ	
	∴ ∆PRQIII∆PST	∠,∠,∠	
(b)	Since $\Delta PRQIII\Delta PST$:		
	$\frac{PR}{PS} = \frac{RQ}{ST} = \frac{PQ}{PT}$	corr sides of Δ 's in proportion	
	$\therefore \frac{RQ}{ST} = \frac{PQ}{PT}$ $\therefore \frac{RQ}{PQ} = \frac{ST}{PT}$	cross multiplication	
	$\therefore RQ:PQ = ST:PT$		
(c)	$\frac{PR}{PS} = \frac{PQ}{PT}$	since $\frac{PR}{PS} = \frac{RQ}{ST} = \frac{PQ}{PT}$	
	$\therefore PR \cdot PT = PQ \cdot PS$	cross multiplication	

EXAMPLE 9

A, B, C and D are concyclic points. DOC and AOB are chords. DB and AC are joined. Prove that:

- (a) ΔAOCIIIΔDOB
- (b) $\frac{OB}{OD} = \frac{OC}{OA}$

	Statement		Reason	
(a)	Match the corresponding angles of ΔAOC and ΔDOB as follows and then prove the pairs of angles equal.			
		Draw solid lines for each pair of corresponding angles that are equal. The dotted line indicates that the pair of angles are equal due to the sum of the angles of a triangle.		
		OC and ΔDOB:	MARKET AUGUSTAS 1995 AUG	
		$\hat{A} = \hat{D}$	arc BC subtends equal angles	
		$\hat{\mathbf{C}} = \hat{\mathbf{B}}$	arc AD subtends equal angles	
	(3)	$\hat{O}_2 = \hat{O}_1$	sum of angles of Δ	
	∴ ΔA (OCIIIADOB	∠,∠,∠	
	Note:	You could have also used the reason "vertically opposite angles" for statement (3) above.		
(b)		CIIIADOB	corr sides of Δ's in	
	. AO	$=\frac{OC}{AC}$	proportion	
	DO	OB DB	No. of the Control of	
	$\therefore \frac{OA}{OD}$	$=\frac{OC}{OB}$		
		$=\frac{OC}{OA}$	cross multiplication	