OUESTION/VRAAG 5

QUESTI	ION/VRAAG 5	
5.1.1	(1;-2)	$ \sqrt{\frac{\text{for/}vir 1}{\sqrt{\text{for/}vir - 2}}} $ (2)
5.1.2	For x-intercept/Vir x-afsnit: $0 = \frac{-9}{x-1} - 2$ $2 = \frac{-9}{x-1}$	$\checkmark y = 0$
	2(x-1) = -9 $2x = -7$	✓ simplification/vereenv
	$x = -\frac{7}{2} \qquad \left(-\frac{7}{2} \; ; \; 0\right)$	✓ answer/antwoord
	For y-intercept/Vir y-afsnit: $y = \frac{-9}{0-1} - 2$	$\checkmark x = 0$
	$= 9 - 2$ $= 7 \qquad (0;7)$	✓ answer/antwoord (5)
5.1.3	y = -x - 1	$\begin{array}{c} \checkmark - x \\ \checkmark - 1 \end{array} \tag{2}$

5.1.4 Closest point is a point of intersection between the axis of symmetry and the hyperbola/*Naaste punt is 'n snypunt tussen die simmetrie-as en die hiperbool*:

$$-x-1 = \frac{-9}{x-1} - 2$$

$$-x+1 = \frac{-9}{x-1}$$

$$x-1 = \frac{9}{x-1}$$

$$(x-1)^2 = 9$$

$$x-1 = 3 \text{ or } x-1 = -3$$

$$x = 4$$

$$x = -2$$

in the fourth quadrant, x > 0, hence x = 4 only

$$y = -4 - 1$$
$$y = -5$$

Point/Punt is (4; -5)

OR/OF

Closest point is a point of intersection between the axis of symmetry and the hyperbola/*Naaste punt is 'n snypunt tussen die simmetrie-as en die hiperbool*:

$$-x-1 = \frac{-9}{x-1} - 2$$

$$(-x-1)(x-1) = -9 - 2(x-1)$$

$$-x^2 + 1 = -9 - 2x + 2$$

$$0 = x^2 - 2x - 8$$

$$0 = (x-4)(x+2)$$

$$x = 4$$

$$x = -2$$

in the fourth quadrant, x > 0, hence x = 4 only

$$y = -4 - 1$$

 $y = -5$ Point is $(4; -5)$

OR/OF

$$y = \frac{-9}{x}$$
 translate 1 right and 2 down $f(x) = \frac{-9}{x-1} - 2$

Under translation 1 right and 2 down, points in the fourth quadrant will stay in the fourth quadrant.

Since the origin becomes A under the translation 1 right and 2 down and the point in the fourth quadrant which is

the closest point on $y = \frac{-9}{x}$ to the origin is (3; -3),

The closest point on f to A is (3+1;-3-2) i.e. (4;-5)

✓ equating/vgl

$$\sqrt{(x-1)^2} = 9$$

✓ answers for/antwoord vir x ✓ selects x = 4 only/ kies slegs x = 4

✓ answer for/antwoord vir y (5)

✓ equating/vgl

$$\sqrt{0} = x^2 - 2x - 8$$

✓ answers for/antwoord vir x

✓ selects x = 4 only/ kies slegs x = 4✓ answer for/antwoord vir y

(5)

✓ points in 4th quad stay in 4th quad ✓ origin becomes A ✓ closest point to origin on parent function is (3; -3)

✓ answer/antwoord (5)

	Onder die translasie 1 regs en 2 na onder, sal punte in die vierde kwadrant steeds in die vierde kwadrant wees. Die oorsprong word A onder die translasie 1 regs en 2 na onder, en die punt in die vierde kwadrant wat die naaste punt aan $y = \frac{-9}{x}$ tot die oorsprong is, is $(3; -3)$. Die naaste punt op f aan A is $(3+1; -3-2)$ $d.i.$ $(4; -5)$	✓ punte in 4 ^{de} kwad bly in 4 ^{de} kwad ✓ oorsprong word A ✓ naaste punt aan oorsprong op moederfunksie is (3; -3) ✓ ✓ answer/antwoord (5)	
5.1.5	$y = \frac{9}{x - 1} + 2$	$ \begin{array}{c} \sqrt{\frac{9}{x-1}} \\ \sqrt{+2} \end{array} \tag{2} $	
5.2.1	For y-intercept/Vir y-afsnit substitution $x = 0$: $y = 4.2^{\circ} + 1$ = 5 H(0; 5)	$\checkmark x = 0$ substitution into the equation/in die vgl $\checkmark y = 5$ (2)	
5.2.2	For x-intercept/Vir y-afsnit $y = 0$ i.e./d.i. $4.2^{-x} + 1 = 0$ $4.2^{-x} = -1$ $2^{-x} = -\frac{1}{4}$, which is impossible, since $2^{-x} > 0$ for $x \in R$, wat onmoontlik is omdat $2^{-x} > 0$ vir $x \in R$ Therefore/Dus: no solution/geen oplossing, which means there will be no x-intercept/wat beteken daar sal geen x-afsnit wees nie.	✓ $4.2^{-x} + 1 = 0$ ✓ $2^{-x} = -\frac{1}{4}$ and explanation/ en verduideliking (2)	
	OR/OF The graph lies above its asymptote $y = 1$ because the coefficient of 2^{-x} is $4/Die$ grafiek lê bokant sy asimptoot $y = 1$ want die koëffisiënt van 2^{-x} is 4 . OR/OF	✓ above/bokant ✓ $y = 1$ (2)	
5.2.3	The range is $(1; \infty)$ or $y > 1$ Die waardeversameling is $(1; \infty)$ of $y > 1$	✓✓ correct range/korrekte waardeversameling (2)	
	y = 1	✓ shape/vorm ✓ y-intercept and other point/ y-afsnit en ander punt ✓ asymptote/asimptoot (3)	

5.2.4	$g(x) = 4(2^{-x} + 2)$ $= 4.2^{-x} + 8$ The graph of h is translated 7 units upwards to form g/ Die grafiek van h word 7 eenhede na bo getransleer om g	✓ 7 units/eenhede ✓ upwards/opwaarts	(2) [25]
	te vorm.		