

GRADE 11 TECHNICAL MATHEMATICS MEMORANDUM PAST PAPER QUESTIONS FUNCTIONS AND GRAPHS

D(1; -4), answer only, full marks

 $g(1) = (1) - 3\checkmark$, correct substitution

(1)

 $y = -2\checkmark$

 $ED = 2\checkmark$

OR

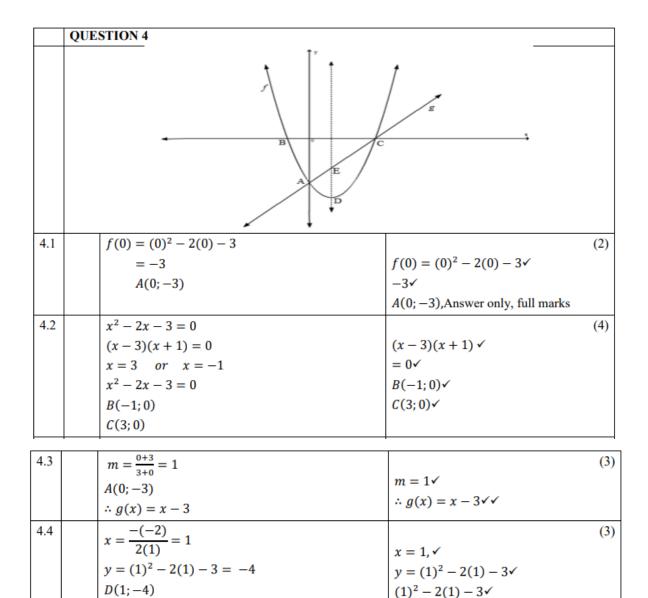
 $y \ge -4, y \in \mathbb{R}\checkmark$

 $y:y\in [-4;\infty)\checkmark$

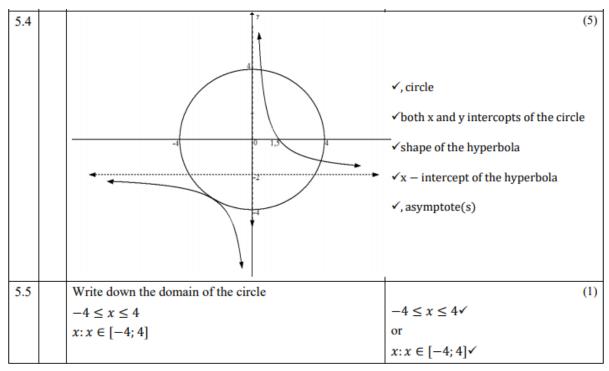
4.5

4.6

x - value at point = 1 $\therefore g(1) = (1) - 3 = -2$


 $ED = Y_E - Y_D$ = Max - Min

 $y \ge -4, y \in \mathbb{R}$


 $y: y \in [-4; \infty)$

ED = 2

OR

	QUESTION 5			
		Given: $f(x) = \frac{3}{x} - 2$ and a circle $x^2 + y^2 = 16$		
5.1		x = 0		(2)
		y = -2	$x = 0 \checkmark$ $y = -2 \checkmark$	
			$y = -2\checkmark$	
5.2		For x-intercept, $y = 0$		(4)
		$0 = \frac{3}{x} - 2$ $\frac{3}{x} = 2$ $x = \frac{3}{2}$ $(\frac{3}{2}; 0)$ There is no y - intercept	$0 = \frac{3}{x} - 2, equating to zero \checkmark$ $x = \frac{3}{2} \checkmark$ $\left(\frac{3}{2}; 0\right) \checkmark$ There is no $y - intercept \checkmark$	
5.3		$r^2 = 16$		(2)
		r = 4	$r^2 = 16\checkmark$ $r = 4\checkmark$	
			$r = 4\checkmark$	
			Answer only, full marks	

	QUES	TION 6	
		On the sketch below, $f(x) = b^x + 2$, and $T(-1;5)$ is a point on f	- *x
6.1		$3 = b^{-1}$ $b = 3^{-1} = \frac{1}{3}$	(3) $5 = b^{-1} + 2\checkmark$, correct substitution $3 = b^{-1}\checkmark$, simplification $b = 3^{-1} = \frac{1}{3}\checkmark$
6.2		$f(0) = \left(\frac{1}{3}\right)^{0} + 2$ $f(0) = 3$ $(0; 3)$	$f(0) = \left(\frac{1}{3}\right)^{0} + 2\checkmark$ $f(0) = 3\checkmark$ (2)
6.3		$f(x) = 3^x + 2$	$f(x) = 3^x + 2\checkmark\checkmark$ (2)
6.4		If $(x;8)$ is a point on the graph f , calculate the of x . $8 = \left(\frac{1}{3}\right)^x + 2$ $6 = \left(\frac{1}{3}\right)^x$ $x = \log_{\frac{1}{3}} 6$ $x = -1.63$	$6 = \left(\frac{1}{3}\right)^{x} \checkmark$ $x = \log_{\frac{1}{3}} 6 \checkmark$ $x = -1,63 \checkmark$