Organic Chemistry Part 1

Juffrou Karen

- Organic molecules consist of C – atoms
- C is the basic building block of organic compounds

Group IV

Valency of 4

1	IA 1 H	IIA																0 2 He
2	3 Li	4 Be			of	Ε	ler	5 B	c	7 N	8 0	9 F	10 Ne					
3	11 Na	12 Mg	ШB	IVB	٧B	ΥIB	VIIB		— VII —		IB	IB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 ¥	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Кг
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 106	107 107	108 1 0 8	109 109	110 110								

12

6

Lewis structure for Carbon

• C

Organic chemistry Molecules of:

 These bonds can also include:

 O
 N
 F
 I

 CI
 P
 S
 Br

Juffrou Karen

Chains, branches and cyclic structures

Homologous series

a series of organic compounds that can be described by the same general formula

Representation of organic molecules: General formula (Homologous series) Formula for a group of similar compounds

Alkene: C_nH_{2n}

Molecular formula

Shows the number of atoms in the molecule

Butene: C_4H_8

Representation of organic molecules:

Structural formula

Illustrates bonds and atoms in a molecule

Butene:

a bond or an atom or a group of atoms which determine(s) the physical and chemical properties of a group of organic compounds

Alkanes – Single bonds

Alkenes – Double bonds

Alkynes – Triple bonds

Know the functional group of each homologous series in the examination guidelines

- Homologous series:
- Alkanes
- General formula:
 - $C_n H_{2n+2}$
 - Functional group:

- Homologous series: Alkenes
- General formula: C_nH_{2n}

Functional group: $\begin{vmatrix} I & I \\ C = C \\ I & I \end{vmatrix}$

Ethene

Functional groups Homologous series: Alkynes $H - C \equiv C - H$ General formula:

 $C_n H_{2n-2}$

Functional group: $-C \equiv C -$

Homologous series: Halo-alkanes / Alkyl halides

General formula: $C_n H_{2n+1} X$ with $X = C\ell$, Br, I, F Functional group: -Ċ-Br

Bromoethane

Homologous series: Alcohols

General formula: C_nH_{2n+1}OH

Functional group:

Homologous series: Carboxylic acid

General formula: $C_nH_{2n}O_2$

Functional group:

Ethanoic acid

- Homologous series: Esters
- General formula: $C_nH_{2n}O_2$

Functional group: O | | | | -C-C-O-C-|

Methyl ethanoate

Homologous series: Aldehydes

General formula: C_nH_{2n}O

Functional group:

Н О | || H С С Н | Н

Ethanal

- Homologous series: Ketones
- General formula: C_nH_{2n}O
- Functional group:

Propanone

Hydrocarbons and isomers

are organic compounds that consist only of carbon and hydrogen

 C_3H_8 or CH_4

Aliphatic

Aromatic

1 or more Benzene ring(s)

Aliphatic

Saturated Unsaturated

Aliphatic

Saturated Unsaturated

Alkanes

Single bonds

Saturated hydrocarbons

organic compounds consisting of only carbon and hydrogen, with no multiple bonds between C-atoms (only single bonds)

Unsaturated hydrocarbons

organic compounds with one or more multiple covalent bonds between C-atoms

Test for saturated hydrocarbon

Add Brown bromine water (or KMnO₄)

- If saturated colour remain unchanged
- If unsaturated colour changes quickly

Isomers

Organic molecules with the same molecular formula, but different structural formulas

Chain-isomers

Positional-isomers

Different positions of the same functional group

 C_4H_9OH

Functional-isomers

Different functional groups $C_3H_6O_2$

Butene has the molecular formula of C_4H_8 and the following isomers H H H H H H **but-2-ene** H -C -C = C -C -H

but-1-ene

What type of isomers are but-1-ene and but-2-ene? Positional isomers methylpropene H H H-C=C-C-H H Juffrou Karen
Butene has the molecular formula of C_4H_8 and the following isomers.

but-2-ene

What type of isomers are methylpropene and but-1-ene? Chain isomers

Alkanes and substituents

Saturated hydrocarbons

Only single bonds between carbons

- Carbons are bonded with single bonds
- Low reactivity
- Saturated hydrocarbons
- General formula: $C_n H_{2n+2}$

Pent = 5 carbons \rightarrow pentane

Hex = 6 carbons \rightarrow hexane

 $\begin{array}{cccccccc} H & H & H & H & H & H \\ H - C - C - C - C - C - C - C - C - H \\ H & H & H & H & H \end{array}$

Hept = 7 carbons→ heptane

Oct = 8 carbons → octane

Substituents

Alkyl groups are derived from the alkanes and the name is allocated by substituting the ane with an yl

н-с-Methyl

Use di or tri to indicate two or three substituents

Give the IUPAC names of the alkanes with the following molecular formulae:

C₃H₈ Propane

C₅H₁₂ Pentane

 C_8H_{18}

Write down the molecular formulae for each of the following alkanes:

ethane C_2H_6

hexane

heptane

Complete the following formulae with the number of C-atoms given:

Complete the following formulae with the number of H-atoms given:

Draw the structure and give the names of the first four straight chain alkyl groups.

$$\begin{array}{c} H & H & H \\ H - C - C - C - C \\ H & H \end{array} \quad propyl$$

$$\begin{array}{c} H & H & H & H \\ H - C - C - C - C - C - C & - butyl \\ H & H & H & H \end{array}$$

IUPAC naming

International Union of Pure and Applied Chemistry

Naming organic molecules

Who is this?

King Henry VIII from the house of Tudor

Only King, or only Tudor is not enough. We need his whole pedigree.

Step 1 Find the longest continuous chain of C-atoms

(You may need to go around corners):

The stem name= pent

Single bonds= ane

Step 2

Number the C-atoms in the main chain to give the alkyl group (substituent) the lowest number

The stem name = pent Single bonds = ane

> First carbon connected to a substituent is 2

Step 3 Identify and number all the substituents: The stem name = pent Single bonds = ane

> First carbon connected to a substituent is 2

> > Methyl at 2 Methyl at 3

Step 4

If there is more than one identical substituent the prefix is indicated with the prefixes di-(2), tri-(3) and tetra-(4):

H-C-H Η НН Н H - C - C - C - C - H1 5_

The stem name = pent Single bonds = ane

First carbon connected to a substituent is 2

Methyl at 2 Methyl at 3 Dimethyl at 2,3

The name is:

Dimethyl pent ane

Η

Н

H-

Η

Н

H-C-H

H - C - C - C - C - C - C - H

Н

4

НН

5 H

The stem name = pent Single bonds = ane

First carbon connected to a substituent is 2

Methyl at 2 Methyl at 3 Dimethyl at 2,3

The name is:

The stem name = pent Single bonds = ane

2,3-Dimethylpentane

First carbon connected to a substituent is 2

Methyl at 2 Methyl at 3 Dimethyl at 2,3

H- C -H Η Н **C** -**- H** 6 Η <u> Н- С</u>-Н н н- <mark>С</mark> -н H-Ċ -H

If 2 different alkyl groups are present, they are written alphabetically (ignore the prefixes di, tri etc. for order but include for name)

3-ethyl-2,3-dimethylhexane

3-ethyl-2,3-dimethylhexane

- hyphens separate numbers from words
- commas separate two numbers
- write the name as a single word with no spaces

These are the basic rules. We will add to these rules when we need to.

The stem is = **But**

Single bonds = **ane**

No substituents

 $CH_{3}-CH_{2}-CH_{2}-CH_{3}$

butane

(Cadac gas = mixture of butane and propane)

The stem is = **Prop**

Single bonds = **ane**

Methyl at Carbon 2

2-Methylpropane

The stem is = **Prop**

Single bonds = **ane**

2 Methyls at carbons 2 and 2

2,2-Dimethylpropane

The stem is = pent

Single bonds = **ane**

1 Methyl at carbon 3

$\begin{array}{c} CH_{3} - CH_{3} - CH_{4} - CH_{2} - CH_{3} \\ CH_{2} \\ CH_{2} \\ CH_{2} \\ CH_{3} \end{array}$

3-Methylpentane

The stem is = **But**

Single bonds = **ane**

2 Methyls at carbons 2 and 2

2,2-Dimethylbutane

The stem is = **Pent**

2,3,3-trimethylpentane

Organic Chemistry Part 2

Juffrou Karen

Boiling point

The temperature at which the vapour pressure of the substance is equal to the atmospheric pressure.

Melting point

The temperature at which the solid and liquid phases of a substance are at equilibrium.

Vapour pressure

The pressure exerted by a vapour at equilibrium with its liquid in a closed system.

A high vapour pressure means that a substance is volatile and that the substance evaporates easily.

Intermolecular forces

London forces/ Dispersion forces	Dipole-dipole forces	Hydrogen bonds
Alkanes Alkenes Alkynes	Aldehydes Ketones Esters	Alcohols (1 bonding site)
	Alkyl halides	Carboxylic acids (2 bonding sites)

Consider the following three compounds with the formula C_5H_{12}

Consider the following three compounds with the formula C_5H_{12} Are these compounds isomers?

Consider the following three compounds with the formula C_5H_{12} Identify the type of isomers present.

Consider the following three compounds with the formula C_5H_{12} Chain isomers

Consider the following three compounds with the formula C_5H_{12} Which intermolecular forces are present?

Consider the following three compounds with the formula C_5H_{12} London (Dispersion) forces

Consider the following three compounds with the formula C_5H_{12} Which compound will have the highest boiling point? Explain.

2-methylbutane

H = C = H H = C = H H = H H = C = C = C = H H = H H = H H = H

Consider the following three compounds with the formula C_5H_{12} Which compound will have the highest boiling point? Explain.

- All have London (Dispersion) forces
- Pentane has the longest chain length, and thus the largest surface area
- The IMF between the pentane molecules will be the strongest,
- therefor more energy will be required to overcome the stronger IMF

ethyl ethanoate

ethyl methanoate

Which compound will have the highest boiling point? Explain

- Both have dipole-dipole forces
- Ethyl ethanoate has a larger molecular mass, and the largest surface area
- The IMF between the ethyl ethanoate molecules will be the strongest,
- therefor more energy will be required to overcome the stronger IMF,
- and therefor ethyl ethanoate will have the highest boiling point

Write down the IUPAC name of the following compound:

 $CH_2C(CH_3)CH_3$

2-methylprop-1-ene

Butanoic acid

3-methylbutanal

5-methylhexanoic acid

Butan-2-ol

$\begin{array}{c|c} H & O & H \\ I & \parallel & 1 \\ H - C - C - C - H \\ I & I \\ H & H \end{array}$

propan-2-one

H H Br I I I H-C-C-C-H I I I H H H

1-bromopropane

3-methylpentan-3-ol

6-methylhept-2-yne

2-ethylpent-1-ene

3-methylpentanal

2-ethylpent-1-ene

2-bromopropane

$\begin{array}{cccccc} H & O & H & H \\ I & \parallel & \mid & \mid \\ H - C - C - C - C - C - H \\ I & I & I \\ H & H & H \end{array}$

butan-2-one

 $H C \ell H H$ I I I $H - C - C - C - C - C \ell$ I I I $H C \ell H H$

1,3,3-trichlorobutane

 C_3H_8O

Propan-2-ol Secondary alcohol

Propan-1-ol Primary alcohol

Which type of isomers are the following two compounds?

 C_3H_8O

Propan-2-ol Secondary alcohol Propan-1-ol Primary alcohol

Positional isomers

 C_3H_8O

Propan-2-ol Secondary alcohol Propan-1-ol Primary alcohol

pent-2-ene

2-methylpentanoic acid

But-1-yne

2,4,4-trimethylpent-2-ene
Give the IUPAC-name for the following compound:

1-chloro-3-methylbutane

Consider the following six organic compounds:

Identify two compounds that are chain isomers:

Identify two compounds that are chain isomers:

2-methylpropane

Identify two compounds that are functional isomers:

Identify two compounds that are functional isomers:

propanoic acid

Identify two compounds that are positional isomers:

Identify two compounds that are positional isomers:

The letters **A** to **H** in the table below represent eight organic compounds.

The letters **A** to **H** in the table below represent eight organic compounds.

5.1 Define the term *saturated compound*.

(2)

The letters **A** to **H** in the table below represent eight organic compounds.

5.2 Write down the following:

5.2.1 Letter that represents an UNSATURATED compound.

(1)

The letters **A** to **H** in the table below represent eight organic compounds.

5.2 Write down the following:

5.2.1 Letter that represents an UNSATURATED compound. (1)

(3)

5.2.2 IUPAC name of B

The letters **A** to **H** in the table below represent eight organic compounds.

5.2 Write down the following:

5.2.3 Letter that represents a FUNCTIONAL ISOMER of compound F. (1)

The letters **A** to **H** in the table below represent eight organic compounds.

5.2 Write down the following:

5.2.4 NAME of the functional group of compound C

The letters A to H in the table below represent eight organic compounds.

5.2 Write down the following:

5.2.5 General formula of the homologous series to which compound **D** belongs.

(1)

The letters **A** to **H** in the table below represent eight organic compounds.

5.4 For compound E:

5.4.1 To which homologous series does it belong?

(1)

The letters A to H in the table below represent eight organic compounds.

5.4 For compound E:

5.4.1 To which homologous series does it belong?

5.4.2 Write down its CONDENSED STRUCTURAL FORMULA.

(1)

(2)

A learner uses four organic compounds (**A**, **B**, **C** and **D**) to investigate the effect of the CHAIN LENGTH on BOILING POINT. The obtained results are shown in the table below.

Compound	Condensed structural formula	Boiling point (°C	
Α	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	138	
В	CH ₃ CH ₂ CH ₂ OH	96	
С	CH ₃ CH ₂ OH	77	
D	CH₃OH	64	

A learner uses four organic compounds (**A**, **B**, **C** and **D**) to investigate the effect of the CHAIN LENGTH on BOILING POINT. The obtained results are shown in the table below.

Compound	Condensed structural formula	Boiling point (°C	
Α	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	138	
В	CH ₃ CH ₂ CH ₂ OH	96	
С	CH ₃ CH ₂ OH	77	
D	CH ₃ OH	64	

6.1 Define the term *vapour pressure*.

(2)

A learner uses four organic compounds (**A**, **B**, **C** and **D**) to investigate the effect of the CHAIN LENGTH on BOILING POINT. The obtained results are shown in the table below.

Compound	Condensed structural formula	Boiling point (°C	
Α	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	138	
В	CH ₃ CH ₂ CH ₂ OH	96	
С	CH ₃ CH ₂ OH	77	
D	CH ₃ OH	64	

6.2 Write down the INDEPENDENT variable for this investigation.

(1)

A learner uses four organic compounds (**A**, **B**, **C** and **D**) to investigate the effect of the CHAIN LENGTH on BOILING POINT. The obtained results are shown in the table below.

Compound	Condensed structural formula	Boiling point (°C	
Α	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	138	
В	CH ₃ CH ₂ CH ₂ OH	96	
С	CH ₃ CH ₂ OH	77	
D	CH ₃ OH	64	

6.3 State, with a reason, which ONE (A, B, C or D) of these compounds has the HIGHEST vapour pressure.

(2)

A learner uses four organic compounds (**A**, **B**, **C** and **D**) to investigate the effect of the CHAIN LENGTH on BOILING POINT. The obtained results are shown in the table below.

Compound	Condensed structural formula	Boiling point (°C	
Α	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	138	
В	CH ₃ CH ₂ CH ₂ OH	96	
С	CH ₃ CH ₂ OH	77	
D	CH₃OH	64	

- 6.4 Compound **A** is now compared to pentane.
 - 6.4.1 Is the boiling point of **A** HIGHER THAN, LOWER THAN or EQUAL TO that of pentane? (1)
 - 6.4.2 Refer to the TYPES of intermolecular forces to explain the answer to question 6.4.1. (4)

A learner uses four organic compounds (**A**, **B**, **C** and **D**) to investigate the effect of the CHAIN LENGTH on BOILING POINT. The obtained results are shown in the table below.

Compound	Condensed structural formula	Boiling point (°C)	
Α	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	138	
В	CH ₃ CH ₂ CH ₂ OH	96	
С	CH ₃ CH ₂ OH	77	
D	CH ₃ OH	64	

6.5 Write down the general conclusion that can be made about the boiling points of compounds **A**, **B**, **C** and **D**.

(2) [12]

QUESTION 5 / VRAAG 5

5.1 Compounds in which there are no multiple bonds between C atoms in their <u>hydrocarbon chains</u>. √√
 Verbindings waarin daar geen meervoudige bindings tussen C-atome in hul koolwaterstofkettings is nie. (2)

5.2.1 D√

(1)

522	4 othyl 2.5 dimothylbontono	1 stiel 2.5 dimetialbortson	(2)
5.Z.Z	4-ethyl-2,5-dimethylneptane	4-eliei-2,5-uimelieinepiaan	_ (3)
	Marking criteria / Nasienrig	<u>llyne:</u>	
	 Correct stem, i.e. heptane 	e√	
	Korrekte stam, d.i. heptaa	an	
	 Substituents (ethyl & met 	hyl) correctly identified √	
	Substituente/sykettings (etiel & metiel) korrek geïdentifiseer	
	IIIPAC name completely	correct including numbering, sequence	
	• IOFAC hame completely	correct including humbering, sequence,	
		correle incluitando nominaria valerarda	
		orrek insiditende nommers, volgorde,	
	koppeltekens en kommas	S	
5.2.3	G√		(1)
504			$\langle \mathbf{A} \rangle$
5.2.4	Carbonyi (group) ✓	Karboniei(groep)	(1)
5.2.5	C _n H _{2n} ✓		(1)

OR/OF CH₃CH(OH)CH(CH₃)CH(CH₃)₂

5.4.3 Secondary ✓

Sekondêr

(1)

(2)

5.4.4 The carbon atom bonded to the hydroxyl/OH group is bonded to two other carbons atoms. ✓
 Die koolstofatoom wat aan die hidroksiel/OH-groep verbind is, is ook aan twee ander koolstofatome verbind.
 (1)
 [16]

QUESTION 6 / VRAAG 6

6.1	The pressure exerted by a vapour at equilibrium ✓ with its liquid in a closed system ✓		
	Die druk uitgeoefen deur 'n damp in ewewig met sy vloeistof in 'n geslote sisteem.		(2)
6.2	Chain length/length of carbon chain ✓ Kettinglengte/lengte van koolstofketting		(1)
6.3	D \checkmark ; lowest boiling point \checkmark	D; laagste kookpunt	(2)
6.4.1	Higher than ✓	Hoër as	(1)

6.4.2 Marking criteria

- Compare structures. ✓
- Compare strength of intermolecular forces. ✓
- Compare the energy required to overcome intermolecular forces. ✓

Nasienriglyne

- Vergelyk strukture. ✓
- Vergelyk sterkte van intermolekulêre kragte.
- Vergelyk energie benodig om intermolekulêre kragte te oorkom. ✓

<u>Structure/Struktuur:</u>

Between the molecules of **A** (in addition to London forces) hydrogen forces are present. ✓ Between pentane molecules London forces ✓ are present. *Tussen die molekule van* **A** (bykomend tot Londonkragte) is waterstofbindings. *Tussen pentaanmolekule is Londonkragte.*

Intermolecular forces / Intermolekulêre kragte

Stronger intermolecular forces are present in compound **A** than in pentane. ✓ Sterker intermolekulêre kragte is teenwoording in verbinding **A** as in pentaan. (Or opposite arguments / Of teenoorgestelde argumente)

• Energy/Energie:

More energy is needed to overcome the intermolecular forces in **A**. ✓ *Meer energie is nodig om die intermolekulêre kragte in* **A** *te oorkom.* (Or opposite arguments / Of teenoorgestelde argumente)

(4)

6.5 Boiling point increases ✓ with an increase in the chain length / size of the molecule. ✓ Kookpunt neem toe met 'n toename in die kettinglengte / grootte van die molekuul.

(2) **[12]**

