EUCLIDEAN GEOMETRY PROOFS GR 11 THEOREMS

THEOREM 1(A)

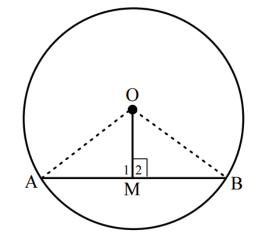
The perpendicular drawn from the centre of a circle to a chord bisects the chord.

Theorem 1 in a nutshell according to the given circle sketched below: If $OM \perp AB$ (which means that $\hat{M}_1 = \hat{M}_2 = 90^\circ$) then AM = MB

Given: Circle with centre O with OM \perp AB . AB is a chord **Required to prove:** AM = MB.

Proof

Join OA and OB. In $\triangle OAM$ and $\triangle OBM$: OA = OB(a) radii $\hat{M}_1 = \hat{M}_2 = 90^{\circ} \dots$ (b) given OM = OM(c) common $\therefore \Delta OAM \equiv \Delta OBM$ RHS $\therefore AM = MB$

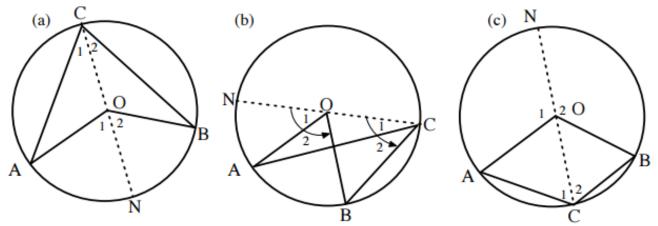


THEOREM 5

The opposite angles of a cyclic quadrilateral are supplementary (add up to 180°) (opp ∠s cyclic quad) Given: A, B, C and D are points that lie on the circumference of the circle (ABCD is a cyclic quadrilateral) Ο, **Required to prove:** $\hat{A} + \hat{C} = 180^{\circ}$ and $\hat{B} + \hat{D} = 180^{\circ}$ Proof Join AO and OC. $\hat{O}_1 = 2\hat{D}$ \angle at centre = 2× \angle at Bircumference $\hat{O}_2 = 2\hat{B}$ \angle at centre = 2× \angle at circumference $\hat{O}_1 + \hat{O}_2 = 2\hat{D} + 2\hat{B}$ And $\hat{O}_1 + \hat{O}_2 = 360^{\circ}$ ∠'s at a point $\therefore 360^\circ = 2(\hat{D} + \hat{B})$ $\therefore 180^\circ = \hat{D} + \hat{B}$ Similarly, by joining BO and DO, it can be proven that $\hat{A} + \hat{C} = 180^{\circ}$

THEOREM 2

The angle which an arc of a circle subtends at the centre of a circle is twice the angle it subtends at the circumference of the circle. (\angle at the centre = $2 \times \angle$ at circumference)



Given: Circle with centre O and A, B and C are all points on the circumference of the circle.

Required to prove: AÔB = 2AĈB For diagrams (a) and (c)

Proof:

Join CO and produce to N. $\hat{O}_1 = \hat{C}_1 + \hat{A}$ Ext \angle of $\triangle OAC$ But $\hat{C}_1 = \hat{A}$ OA = OC, Radii $\therefore \hat{O}_1 = 2\hat{C}_1$ Similarly, in $\triangle OCB$ $\hat{O}_2 = 2\hat{C}_2$ $\therefore \hat{O}_1 + \hat{O}_2 = 2\hat{C}_1 + 2\hat{C}_2$ $\therefore \hat{O}_1 + \hat{O}_2 = 2(\hat{C}_1 + \hat{C}_2)$ $\therefore A\hat{O}B = 2A\hat{C}B$

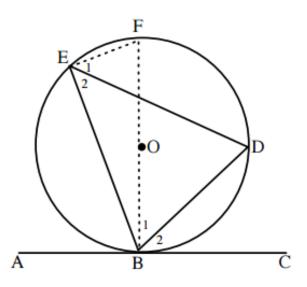
For diagram (b)

Proof: Join CO and produce to N. $\hat{O}_1 = \hat{C}_1 + \hat{A}$ Ext \angle of $\triangle OAC$ But $\hat{C}_1 = \hat{A}$ OA = OC, Radii $\therefore \hat{O}_1 = 2\hat{C}_1$ Similarly, in $\triangle OCB$ $\hat{O}_2 = 2\hat{C}_2$ $\therefore \hat{O}_2 - \hat{O}_1 = 2\hat{C}_2 - 2\hat{C}_1$ $\therefore \hat{O}_2 - \hat{O}_1 = 2(\hat{C}_2 - \hat{C}_1)$ $\therefore \hat{AOB} = 2\hat{ACB}$

THEOREM 9

The angle between a tangent to a circle and a chord drawn from the point of contact is equal to an angle in the alternate segment. (Tan-chord)

Acute-angle case



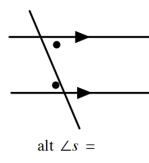
Given: Tangent ABC **Required to prove:** CBD = BED

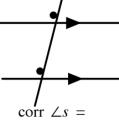
Proof:

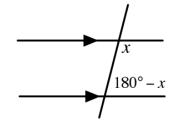
Draw diameter BOF and join EF $\hat{B}_1 + \hat{B}_2 = 90^\circ \dots \tan \perp rad$ $\hat{E}_1 + \hat{E}_2 = 90^\circ \dots \angle in \text{ semi-circle}$ But $\hat{B}_1 = \hat{E}_1 \dots FD \text{ subt} = \angle s$ $\therefore \hat{B}_2 = \hat{E}_2$ $\therefore \hat{CBD} = \hat{BED}$

KEY WORDS TO LOOK FOR:

- 1. <u>Parallel lines:</u> Look for corresponding, alternate and co-interior angles.
 - 1. <u>When parallel lines are given</u>

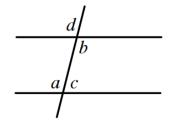






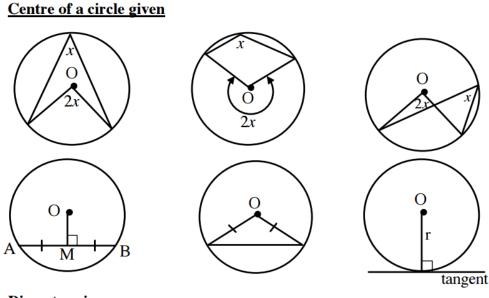
co-int $\angle s$ suppl

2. <u>How to prove that lines are parallel</u>

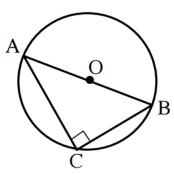


Prove that a = b or a = d or $b + c = 180^{\circ}$

2 <u>O is the centre of the circle. Look at the question to see which of the following questions you can apply.</u>

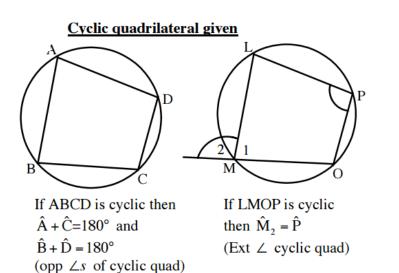


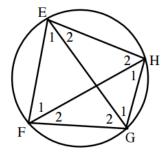
Diameter given



If AOB is diameter then $\hat{C} = 90^{\circ}$ (\angle in semi circle)

3. <u>Cyclic Quadrilaterals:</u> <u>Look at the question to see which of the following questions you can apply.</u>

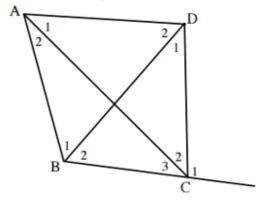




If EFGH is cyclic then $\hat{E}_1 = \hat{H}_1$, $\hat{E}_2 = \hat{F}_2$, $\hat{H}_2 = \hat{G}_2$, $\hat{G}_1 = \hat{F}_1$ ($\angle s$ in same segment)

11. How to prove that a quadrilateral is cyclic

ABCD would be a cyclic quadrilateral if you could prove <u>one</u> of the following:



Condition 1:

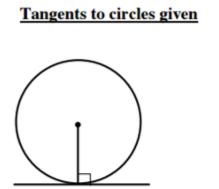
$$(\hat{A}_1 + \hat{A}_2) + (\hat{C}_2 + C_3) = 180^\circ \text{ or}$$

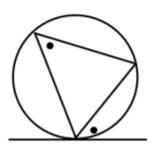
 $(\hat{B}_1 + \hat{B}_2) + (\hat{D}_1 + \hat{D}_2) = 180^\circ$

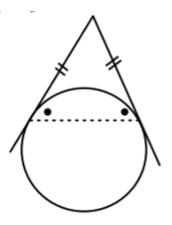
Condition 2: $\hat{C}_1 = \hat{A}_1 + \hat{A}_2$

Condition 3: $\hat{A}_1 = \hat{B}_2 \text{ or } \hat{A}_2 = \hat{D}_1 \text{ or } \hat{B}_1 = \hat{C}_2 \text{ or}$ $\hat{D}_2 = \hat{C}_3$

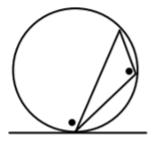
4. <u>Tangents:</u> <u>Look at the question to see which of the following questions you can apply</u>





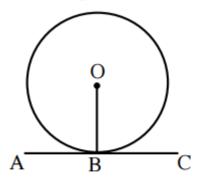


Tangents from the same point

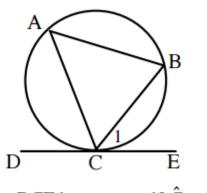


tan chord theorem

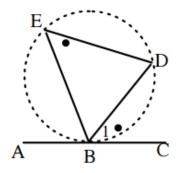
How to prove that a line is a tangent to a circle



ABC is a tangent if $\hat{OBC} = 90^{\circ}$



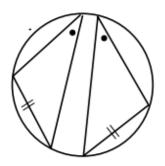
DCE is a tangent if $\hat{C}_1 = \hat{A}$



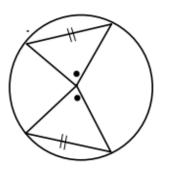
ABC would be a tangent to the "imaginary" circle drawn through EBD if $\hat{B}_1 = \hat{E}$

COROLLARIES ON THEOREM 4

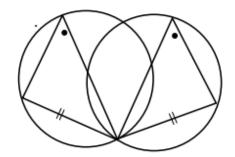
1. Equal chords subtend equal angles at the circumference



2. Equal chords subtend equal angles at the centre



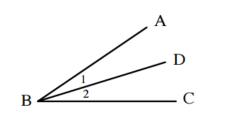
 Equal chords of equal circles subtend equal angles at the circumference.

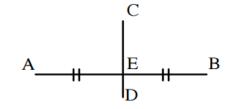


Angle or line bisectors

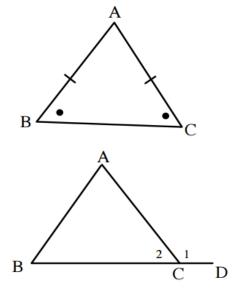
If BD bisects \hat{ABC} then $\hat{B}_1 = \hat{B}_2$

If CD bisects AB then AE = EB



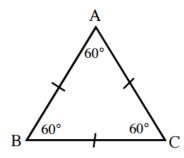


Triangle information



If $\hat{B} = \hat{C}$, then AB = AC. If AB = AC, then $\hat{B} = \hat{C}$. ΔABC is **isosceles**

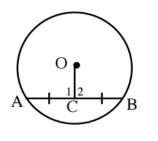
 $\hat{A} + \hat{B} + \hat{C}_2 = 180^{\circ} (\text{sum } \angle s \text{ of } \Delta)$ $\hat{C}_1 = \hat{A} + \hat{B} \qquad (\text{Ext } \angle \text{ of } \Delta)$



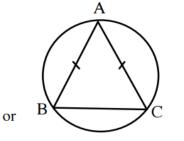
If AB = AC = BC, then $\hat{A} = \hat{B} = \hat{C} = 60^{\circ}$ $\triangle ABC$ is **equilateral**

or

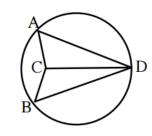
When you must prove two sides are equal



To prove AC = CB, prove $\hat{C}_1 = 90^\circ$



To prove AB = AC, prove $\hat{B} = \hat{C}$



To prove AD = BD, try prove $\triangle ACD = \triangle BCD$