
FUNCTIONS AND INVERSES

QUESTION 5

Given: h(x) = 2x - 3 for $-2 \le x \le 4$. The x-intercept of h is Q.

- 5.1 Determine the coordinates of Q. (2)
- 5.2 Write down the domain of h^{-1} . (3)
- Sketch the graph of h^{-1} in your ANSWER BOOK, clearly indicating the y-intercept and the end points. (3)
- 5.4 For which value(s) of x will $h(x) = h^{-1}(x)$? (3)
- 5.5 P(x; y) is the point on the graph of h that is closest to the origin. Calculate the distance OP.
 (5)
- 5.6 Given: h(x) = f'(x) where f is a function defined for $-2 \le x \le 4$.
 - 5.6.1 Explain why f has a local minimum. (2)
 - 5.6.2 Write down the value of the maximum gradient of the tangent to the graph of f. (1) [19]

WCED SEPTEMBER 2016

QUESTION 6

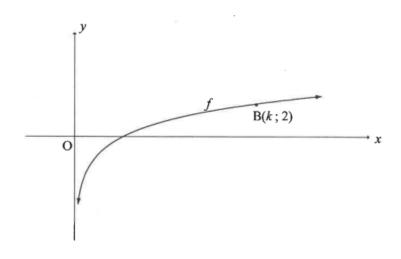
6.1 Given: $f(x) = 2.2^x - 1$

6.1.1 Write down the range of
$$f$$
. (2)

6.1.2
$$g(x) = f(x-1) + 1$$
. Write down the equation of g^{-1} , the inverse of g in the form $y = ...$ (2)

6.2 Given:
$$h(x) = -\sqrt{\frac{x}{3}}; x \ge 0$$

6.2.1 If
$$k(x)$$
 is the inverse of h , give the equation of $k(x)$ (2)


6.2.2 Give the coordinates of the point of intersection of
$$h(x)$$
 and $k(x)$ (2)

NOVEMBER 2021

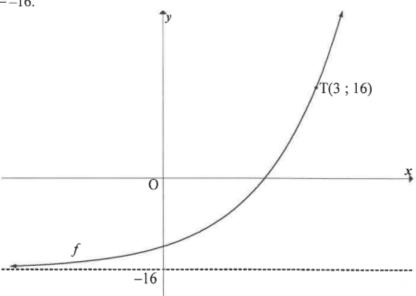
QUESTION 6

The graph of $f(x) = \log_4 x$ is drawn below.

B(k; 2) is a point on f.

6.1 Calculate the value of
$$k$$
. (2)

6.2 Determine the values of
$$x$$
 for which $-1 \le f(x) \le 2$. (2)

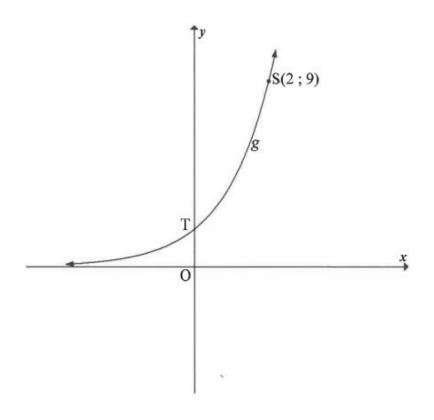

6.3 Write down the equation of
$$f^{-1}$$
, the inverse of f , in the form $y = \dots$ (2)

6.4 For which values of
$$x$$
 will $x ext{.} f^{-1}(x) < 0$? (2) [8]

NSC JUNE 2021

QUESTION 6

- 6.1 Given: $g(x) = 3^x$
 - 6.1.1 Write down the equation of g^{-1} in the form y = ... (2)
 - 6.1.2 Point P(6; 11) lies on $h(x) = 3^{x-4} + 2$. The graph of h is translated to form g. Write down the coordinates of the image of P on g. (2)
- Sketched is the graph of $f(x) = 2^{x+p} + q$. T(3; 16) is a point on f and the asymptote of f is y = -16.

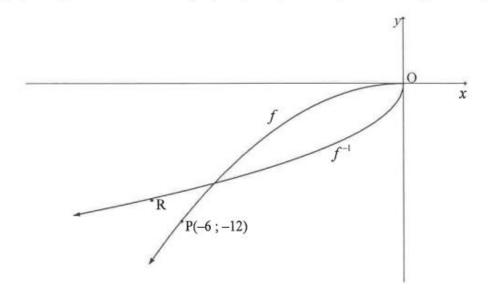

Determine the values of p and q.

(4) [8]

FEB/March 2018

QUESTION 5

The graph of $g(x) = a^x$ is drawn in the sketch below. The point S(2; 9) lies on g. T is the y-intercept of g.

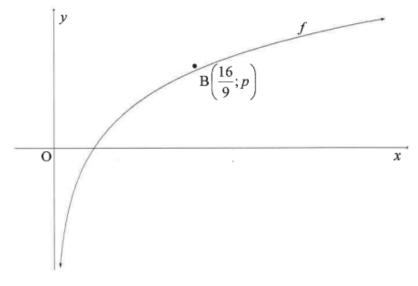


- 5.1 Write down the coordinates of T. (2)
- 5.2 Calculate the value of a. (2)
- 5.3 The graph h is obtained by reflecting g in the y-axis. Write down the equation of h. (2)
- 5.4 Write down the values of x for which $0 < \log_3 x < 1$. (2) [8]

NOV 2018

QUESTION 4

In the diagram below, the graph of $f(x) = ax^2$ is drawn in the interval $x \le 0$. The graph of f^{-1} is also drawn. P(-6; -12) is a point on f and R is a point on f^{-1} .



- 4.1 Is f^{-1} a function? Motivate your answer. (2)
- 4.2 If R is the reflection of P in the line y = x, write down the coordinates of R. (1)
- 4.3 Calculate the value of a. (2)
- 4.4 Write down the equation of f^{-1} in the form y = ... (3)

JUNE 2018

QUESTION 4

The graph of $f(x) = \log_{\frac{4}{3}} x$ is drawn below. $B\left(\frac{16}{9}; p\right)$ is a point on f.

- 4.1 For which value(s) of x is $\log_{\frac{4}{3}} x \le 0$? (2)
- 4.2 Determine the value of p, without the use of a calculator. (3)
- 4.3 Write down the equation of the inverse of f in the form y = ... (2)
- 4.4 Write down the range of $y = f^{-1}(x)$. (2)
- 4.5 The function $h(x) = \left(\frac{3}{4}\right)^x$ is obtained after applying two reflections on f.

 Write down the coordinates of B'', the image of B on h.

 (2)

 [11]