NOTES FUNCTIONS AND INVERSES 02/03/2024

EXAMPLE 2

Determine the equation of the inverse of $y = 3x^2$.

Solution

Original: $y = 3x^2$ Inverse: $x = 3y^2$ $\therefore y^2 = \frac{x}{3}$ $\therefore y = \pm \sqrt{\frac{x}{3}}$

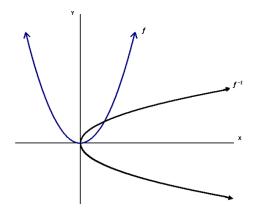
- Note: This inverse gives two outputs for each input. This means that the inverse is not a function. More about this later.
- b) Sketch both $f(x) = 3x^2$ and its inverse on the same set of axes.

$f(x) = 3x^2$				
x	-1	0	1	
У	3	0	3	

$$f(x)^{-1} = \sqrt{\frac{x}{3}}$$

$$x \quad 3 \quad 0 \quad 3$$

$$y \quad -1 \quad 0 \quad 1$$



EXAMPLE 7

Given the function $y = -2x^2$.

- (a) Determine the equation of the inverse of this function.
- (b) Sketch the graphs of $y = -2x^2$ and its inverse on the same set of axes and show the line of symmetry.
- (c) Determine the coordinates of the points of intersection between $y = -2x^2$ and its inverse.

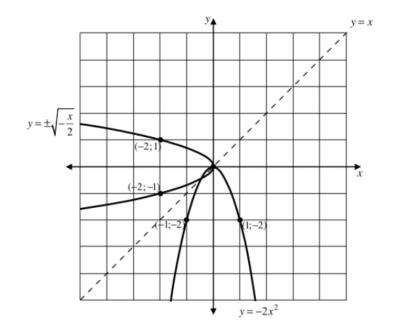
Solution

(a) Original: $y = -2x^2$ Inverse: $x = -2y^2$ $\therefore y^2 = \frac{x}{-2}$

$$\therefore y = \pm \sqrt{-\frac{x}{2}}$$

(b) $y = -2x^2$ is a parabola with a negative orientation.

Three points on $y = -2x^2$:	Invert coordinates for $y = \pm \sqrt{-\frac{x}{2}}$:		
(-1;-2)	(-2;-1)		
(0;0)	(0;0)		
(1;-2)	(-2;1)		

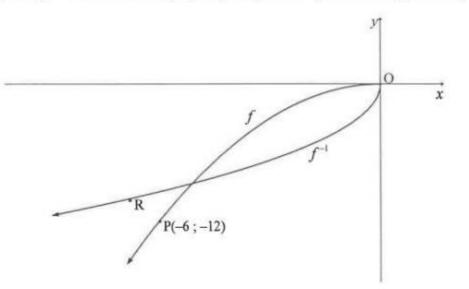


(c) Solve
$$y = -2x^2$$
 and $y = x$ simultaneously:
 $-2x^2 = x$
 $\therefore 2x^2 + x = 0$
 $\therefore x(2x+1) = 0$
 $\therefore x = 0$ or $x = -\frac{1}{2}$
Points of intersection: (0;0) and $\left(-\frac{1}{2}; -\frac{1}{2}\right)$

NOV 2018

QUESTION 4

In the diagram below, the graph of $f(x) = ax^2$ is drawn in the interval $x \le 0$. The graph of f^{-1} is also drawn. P(-6; -12) is a point on f and R is a point on f^{-1} .



4.1	Is f^{-1} a function? Motivate your answer.	(2)
4.2	If R is the reflection of P in the line $y = x$, write down the coordinates of R.	(1)
4.3	Calculate the value of a .	(2)
4.4	Write down the equation of f^{-1} in the form $y =$	(3) [8]

NOV 2018

NSC/NSS - Marking Guidelines/Nasienriglyne

QUESTION/VRAAG 4

4.1	Yes	✓answer			
	For every x-value there is only one corresponding y value	✓ reason			
	OR/OF				
	One to one mapping (vertical line test)	(2)			
4.2	R(-12;-6)	✓answer (1)			
4.3	$f(x) = ax^2$ substitute (-6; -12)				
	$-12 = a(-6)^2$	✓ substitution			
	$a = \frac{-1}{2}$	✓answer			
	$u = \frac{1}{3}$	(2)			
4.4	$f: y = -\left(\frac{1}{3}\right)x^2$				
	$f^{-1}: x = -\left(\frac{1}{3}\right)y^2$	\checkmark swapping x and y			
	$y^2 = -3x$	✓ $y^2 = -3x$ ✓ $y = -\sqrt{-3x}$			
	$y = \pm \sqrt{-3x}$				
	Only $y = -\sqrt{-3x}$ and $x \le 0$				
		(3)			
		8			

6.2 Given:
$$h(x) = -\sqrt{\frac{x}{3}}$$
; $x \ge 0$

6.2.1	If $k(x)$ is the inverse of h , give the equation of $k(x)$	<u> </u>	(2)
-------	---	----------	-----

6.2.2	Give the coordinates of the point of intersection of $h(x)$ and $k(x)$	(2)
-------	--	-----

SOLUTION

6.2.1	$k(x) = 3x^2 ; x \le 0$	$\checkmark k(x) = 3x^2$	
		$\checkmark x \leq 0$	(2)
6.2.2	(0; 0) OR/OF origin/ oorsprong	✓✓ Answer/ Antw	(2)