
TRIGONOMETRY GRAPHS:

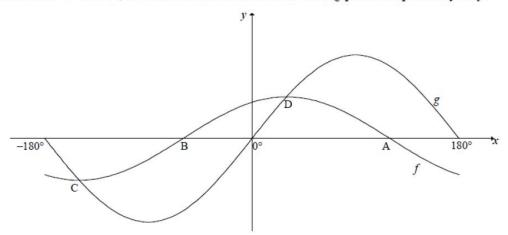
November 2019

QUESTION 6

In the diagram, the graphs of $f(x) = \sin x - 1$ and $g(x) = \cos 2x$ are drawn for the interval $x \in [-90^\circ; 360^\circ]$. Graphs f and g intersect at A. B(360°; -1) is a point on f.

- 6.1 Write down the range of f.
- 6.2 Write down the values of x in the interval $x \in [-90^\circ; 360^\circ]$ for which graph f is decreasing.
- 6.3 P and Q are points on graphs g and f respectively such that PQ is parallel to the y-axis. If PQ lies between A and B, determine the value(s) of x for which PQ will be a maximum.

(6) [10]


(2)

(2)

May-June 2019

QUESTION 6

- 6.1 Determine the general solution of $\cos(x-30^\circ) = 2\sin x$.
- 6.2 In the diagram, the graphs of $f(x) = \cos(x 30^\circ)$ and $g(x) = 2\sin x$ are drawn for the interval $x \in [-180^\circ; 180^\circ]$. A and B are the x-intercepts of f. The two graphs intersect at C and D, the minimum and maximum turning points respectively of f.

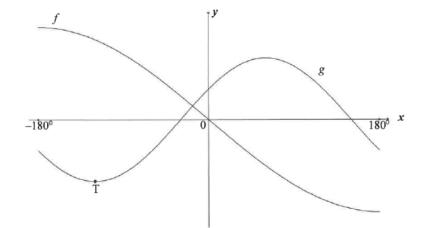
6.2.1	Write	down	the	coordinates of:

- (a) A (1)
- (b) C (2)

6.2.2 Determine the values of x in the interval $x \in [-180^\circ; 180^\circ]$, for which:

(a) Both graphs are increasing (2)

(b)
$$f(x+10^{\circ}) > g(x+10^{\circ})$$
 (2)


6.2.3 Determine the range of
$$y = 2^{2\sin x + 3}$$
 (5)

(6)

June 2018

QUESTION 6

In the diagram, the graphs of $f(x) = -3\sin\frac{x}{2}$ and $g(x) = 2\cos(x - 60^\circ)$ are drawn in the interval $x \in [-180^\circ; 180^\circ]$. T(p;q) is a turning point of g with p < 0.

6.1 Write down the period of *f*.

6.2 Write down the range of g.	(2	9	
--------------------------------	----	---	--

6.3	Calculate $f(p) - g(p)$.	(3)	
-----	---------------------------	-----	--

- 6.4 Use the graphs to determine the value(s) of x in the interval $x \in [-180^\circ; 180^\circ]$ for which:
 - 6.4.1 g(x) > 0 (3)

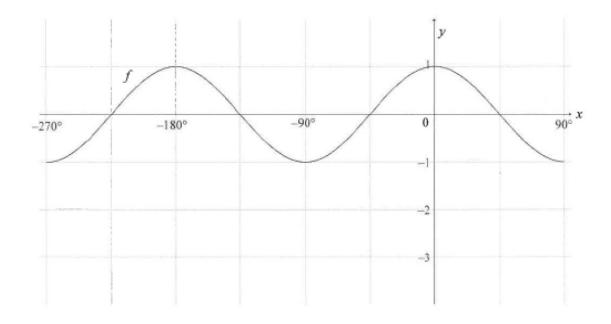
6.4.2
$$g(x).g'(x) > 0$$
 (4)

(1)

March 2018

5.5 Consider: $g(x) = -4\cos(x + 30^{\circ})$		Consider:	$g(x) = -4\cos(x+30^\circ)$	
		5.5.1	Write down the maximum value of $g(x)$.	(1)
		5.5.2	Determine the range of $g(x) + 1$.	(2)
		5.5.3	The graph of g is shifted 60° to the left and then reflected about the x-axis to form a new graph h . Determine the equation of h in its	

(3)


(4)

November 2017:

QUESTION 6

In the diagram, the graph of $f(x) = \cos 2x$ is drawn for the interval $x \in [-270^\circ; 90^\circ]$.

simplest form.

- 6.1 Draw the graph of g(x) = 2 sin x −1 for the interval x ∈ [-270°;90°] on the grid given in your ANSWER BOOK. Show ALL the intercepts with the axes, as well as the turning points.
- 6.2 Let A be a point of intersection of the graphs of f and g. Show that the x-coordinate of A satisfies the equation $\sin x = \frac{-1 + \sqrt{5}}{2}$. (4)
- 6.3 Hence, calculate the coordinates of the points of intersection of graphs of f and g for the interval x ∈ [-270°;90°]. (4)