

education

Department of Education FREE STATE PROVINCE

PHYSICAL SCIENCES TRAINING MANUAL CAPS

ACIDS AND BASES ANSWERS TO QUESTIONS GRADE 12

This document consists 9 of pages

Copyright reserved

Daily task 1: Homework/Classwork

Question 1: Multiple choice questions

1.1	С	1.2	С	1.3	А	1.4	D
1.5	С	1.6	D	1.7	С	1.8	А
1.9	С	1.10	D (largest io	nic charg	ge, most difficu	It to ren	nove H⁺.)
1.11	А	1.12	D		-		

Contextual questions

Question 2

2.1							
2.1.1	NH_4^+	2.1.2	NH_3	2.1.3	$C_{10}H_{15}N_2^+$	2.1.4	H_3O^+
2.2							
2.2.1	Cℓ⁻	2.2.2	HCO_3^-	2.2.3	OH	2.2.4	PO 4 ³⁻

Question 3

3.1				
3.1.1	HCł +	+ H₂O -	\rightarrow H ₃ O ⁺ +	- Cl₋
	a1	b2	a2	b1

- $\begin{array}{ccc} 3.1.2 & O^{2\text{-}} + H_2O \rightarrow OH^- + OH^- \\ b1 & a2 & a1 & b2 \end{array}$
- $\begin{array}{ccc} 3.1.3 & \mathsf{NH}_4^{\scriptscriptstyle +} + \mathsf{BrO}_3^{\scriptscriptstyle -} \rightarrow \mathsf{NH}_3 + \mathsf{HBrO}_3 \\ & \mathsf{a1} & \mathsf{b2} & \mathsf{b1} & \mathsf{a2} \end{array}$

3.1.4
$$NH_3 + H_3PO_4 \rightarrow NH_4^+ + H_2PO_4^-$$

b1 a2 a1 b2

3.1.5 HPO₄²⁻ + HSO₄⁻
$$\rightarrow$$
 H₂PO₄⁻ + SO₄²⁻
b1 a2 a1 b2

3.2 H₂O; H₂PO₄⁻; OH⁻

Question 4

- 4.1 $HNO_2(aq) + HCO_3^-(aq) \Rightarrow NO_2^-(aq) + H_2CO_3(aq)$
- 4.2 A pair of compounds or ions that differ by the presence of one H^+ ion.
- 4.3 HNO₂(aq) and NO $_{2}^{-}$ (aq) OR HCO $_{3}^{-}$ (aq) and H₂CO₃(aq)

Question 5

- 5.1 $NH_4^+ + HCO_3^- \rightleftharpoons NH_3 + H_2CO_3$
- 5.2 HCO_3^- and NH_3
- 5.3 The reaction will favour the products. HCO_3^- will have, due to its negative charge, a greater tendency to accept a H⁺ tan the neutral NH₃, a weaker base.

 NH_4^+ is a stronger acid than H_2CO_3 and will donate a H^+ easier than H_2CO_3 .

6.1 $C\ell$; CH_3COO^- ; OH^-

6.2 NH_4^+ ; HSO_4^- ; H_3O^+

Daily task 2: Homework/Classwork

Question 1: Multiple choice questions

1.1	В	1.2	D
1.3	С	1.4	В
1.5	A (strongest acid of the four acids)	1.6	А
1.7	B	1.8	С
1.9	С	1.10	В
1.11	С	1.12	В
1.13	С		

Contextual questions

Question 2

2.1 Neutral

Salt of a strong acid and a strong base. Na⁺ and NO $_{3}^{-}$ will not undergo hydrolysis.

2.2 Basic

Salt of strong base and weak acid.

Na⁺ will not undergo hydrolysis.

 HCO_{3}^{-} is the conjugate base of a weak acid and will undergo hydrolysis:

 $HCO_{3}^{-} + H_{2}O \rightleftharpoons H_{2}CO_{3} + OH^{-}$

Formation of OH⁻ causes solution to be basic.

2.3 Basic

Salt of strong base and weak acid. K^+ will not undergo hydrolysis.

 $\text{CO}_3^{2-} + \text{H}_2\text{O} \rightleftharpoons \text{HCO}_3^- + \text{OH}^-$

Formation of OH⁻ causes solution to be basic.

2.4 Acidic

Salt of strong acid and a weak base.

 NO_3^- will not undergo hydrolysis.

NH⁺₄ the conjugate acid of a weak base and will undergo hydrolysis:

 $NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$

Formation of H_3O^+ causes solution to be acidic.

Question 3

3.1 The reaction of a salt with water.

OR

The reaction of an ion with water to produce the conjugate acid and a hydroxide ion or the conjugate base and a hydronium ion.

- 3.2 NaOH; HCO_3^-
- 3.3 NaOH strong base; HCO_{3}^{-} weak acid.

- 3.4 Greater than 7
- 3.5 $CO_3^{2-} + H_2O \rightleftharpoons HCO_3^- + OH^-$

4.1 NH₃ and HNO₃

- 4.2 NH₃ weak base; HNO₃ strong acid
- 4.3 Less than 7
- 4.4 $NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$ Formation of H_3O^+ causes solution to be acidic.

Daily task 3: Homework/Classwork

Question 1: Multiple choice questions

1.1	А	1.2	А
1.3	В	1.4	В
1.5	А	1.6	В

Contextual questions

Question 2

 $\begin{aligned} &2\text{NaOH} + \text{H}_2\text{S} \rightleftharpoons \text{Na}_2\text{S} + 2\text{H}_2\text{O} \\ &n_b = c_b\text{V}_b = (0,3)(31,8 \times 10^{-3}) = 9,54 \times 10^{-3} \text{ mol} \end{aligned}$ From balanced equation: $\frac{n_a}{n_b} = \frac{1}{2} \therefore n_a = \frac{1}{2}n_b \therefore n_a = \frac{1}{2}2(9,54 \times 10^{-3}) = 4,77 \times 10^{-3} \text{ mol} \end{aligned}$ $c_a = \frac{n}{V} = \frac{4,77 \times 10^{-3}}{25 \times 10^{-3}} = 0,19 \text{ mol} \cdot \text{dm}^{-3} \end{aligned}$

Question 3

 $\begin{array}{l} 2HNO_3 + Sr(OH)_2 \rightarrow Sr(NO_3)_2 + 2H_2O\\ n_b = c_bV_b = (0,25)(25 \ x \ 10^{-3}) = 6,25 \ x \ 10^{-3} \ \text{mol} \end{array}$ From balanced equation: $\frac{n_a}{n_b} = \frac{2}{1} \therefore n_a = 2n_b \ \therefore \ n_a = 2(6,25 \ x \ 10^{-3}) = 0,0125 \ \text{mol} \end{aligned}$ $c_a = \frac{n}{V} \ \therefore 0,3 = \frac{0,0125}{V} \ \therefore \ V = 0,04167 \ \text{dm}^3 = 41,67 \ \text{cm}^3 \end{array}$

Question 4

4.1 A solution of precisely known concentration.

4.2 It ionises completely in water.

4.3
$$H_2SO_4(\ell) + 2H_2O(\ell) \rightarrow 2H_3O^+(aq) + SO_4^{2-}(aq)$$

4.4
$$n_b = c_b V_b = (0,2)(20 \times 10^{-3}) = 4 \times 10^{-3} \text{ mol}$$

4.5 From balanced equation:
$$\frac{n_a}{n_b} = \frac{1}{2} \therefore n_a = \frac{1}{2} n_b \therefore n_a = \frac{1}{2} (4 \times 10^{-3}) = 2 \times 10^{-3} \text{ mol}$$

4.6
$$c_a = \frac{n}{V} = \frac{2 \times 10^{-3}}{12 \times 10^{-3}} = 0,17 \text{ mol} \cdot \text{dm}^{-3}$$

Copyright reserved

4.7 Methyl orange Weak base with strong acid and pH at equivalence point will be smaller than 7.

Question 5

5.1 A strong acid ionises completely in water.

5.2
$$CO_3^{2-} + H_2O \Rightarrow HCO_3^{-} + OH^{-}$$

5.3

5.3.1 pH =
$$-\log[H_3O^+]$$
 : $[H_3O^+] = 10^{-pH} = 10^{-3} = 1 \times 10^{-3} \text{ mol} \cdot \text{dm}^{-3}$

- 5.3.2 No
- 5.3.3 $[H_3O^+]$ < [acid] and thus the acid is only partially ionised and is a weak acid.

5.4
$$n_b = c_b V_b = (0,5)(28 \times 10^{-3}) = 0,014 \text{ mol}$$

From balanced equation: $\frac{n_a}{n_b} = \frac{1}{1} \therefore n_a = n_b = 0,014 \text{ mol}$
 $n(acid in excess) = 0,014 \text{ mol}$
 $n(acid in flask) = c_a V_a = (1,0)(50 \times 10^{-3}) = 50 \times 10^{-3} \text{ mol}$
 $n(acid reacted) = 50 \times 10^{-3} - 0,014 = 0,036 \text{ mol}$
Mole CaCO₃: From balanced equation: $\frac{n_a}{n_b} = \frac{2}{1} \therefore n_b = \frac{1}{2} n_b = \frac{1}{2} (0,036) = 0,018 \text{ mol}$
Mass CaCO₃: $n = \frac{m}{M} \therefore 0,018 = \frac{m}{100} \therefore m = 1,8 \text{ g}$

Daily task 4: Homework/Classwork

Question 1: Multiple choice questions

1.1	А	1.2	В
1.3	D	1.4	С
1.5	D		

Contextual questions

Question 2

- 2.1 $pH = -log[H_3O^+] = -log(2,9 \times 10^{-4}) = 3,54.$
- 2.2 Acidic

Question 3

- 3.1 pH = -log[H₃O⁺] = 7,4 ∴ [H₃O⁺] = 10^{-pH} = 10^{-7,4} = 3,98 x 10⁻⁸ mol·dm⁻³
- 3.2 pH = -log[H₃O⁺] = 3,16 ∴ [H₃O⁺] = 10^{-pH} = 10^{-3,16} = 6,92 x 10⁻⁴ mol·dm⁻³

4.1 $K_w = [H_3O^+][OH^-] = 1,0 \times 10^{-14}$ $\therefore [H_3O^+](2,5) = 1,0 \times 10^{-14}$ $\therefore [H_3O^+] = 4 \times 10^{-15} \text{ mol} \cdot \text{dm}^{-3}$ $pH = -\log[H_3O^+] = -\log(4 \times 10^{-15}) = 14,39$

OR

[OH⁻] = [KOH] = 2,5 pOH = -log[2,5] = - 0,397 pH + pOH = 14 ∴ pH + (-0,397) = 14 ∴ pH = 14,39

4.2 $pH = -log[H_3O^+] = 13,48$ $\therefore [H_3O^+] = 10^{-pH} = 10^{-13,48} = 3,31 \times 10^{-14} \text{ mol} \cdot \text{dm}^{-3}$

4.3
$$pH = -log[H_3O^+] = -log(2 \times 1,5) = -0,48$$

4.4 $pH + pOH = 14 \therefore 10,6 + pOH = 14 \therefore pOH = 3,4$ $pOH = -log[OH^-] \therefore [OH^-] = 10^{-3,4} = 3,98 \times 10^{-4} \text{ mol} \cdot \text{dm}^{-3}$

Question 5

- 5.1 $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$
- 5.2 $n_a = c_a V_a = (0,5)(1) = 0,5 \text{ mol}$
- 5.3 $n_b = n_a = 0.5 \text{ mol}$
- 5.4 HCł

5.5
$$n_a(\text{in excess}) = 0.5 - 0.06 = 0.44 \text{ mol}$$

 $c_a = \frac{n}{V} = \frac{0.44}{1} = 0.44 \text{ mol} \cdot \text{dm}^{-3}$

 $[H_3O^+] = [HC\ell] = 0,44 \text{ mol} \cdot \text{dm}^{-3}$

 $pH = -log[H_3O^+] = -log(0,44) = 0,36$

Daily task 5: Homework/Classwork

Question 1: Multiple choice questions

1.1	D	1.2	А
1.3	В	1.4	В
1.5	С		

Daily task 6: Homework/Class work

Question 1: Multiple choice questions

1.1	В	1.2	А
1.3	С	1.4	D
1.5	В	1.6	А
1.7	D	1.8	С
1.9	В	1.10	В
1.11	А	1.12	D

Contextual questions

Question 2

- 2.1 NaHCO₃ + HC ℓ \rightarrow NaC ℓ + CO₂ + H₂O
- 2.2 $n_a = c_a V_a = (0,2)(23,75 \times 10^{-3}) = 4,75 \times 10^{-3} \text{ mol}$

From balanced equation: $\frac{n_a}{n_b} = \frac{1}{1} \therefore n_a = n_b \therefore n_b = 4,75 \text{ x } 10^{-3} \text{ mol}$

2.3 Mass NaHCO₃:
$$n = \frac{m}{M} \therefore 4,75 \times 10^{-3} = \frac{m}{84} \therefore m = 0,399 \text{ g}$$

%Purity = $\frac{0,399}{0,4} \times 100 = 99,75\%$

Question 3

 $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$

 $n_a = c_a V_a = (0,33)(37 \times 10^{-3}) = 0,012 \text{ mol}$

From balanced equation: $\frac{n_a}{n_b} = \frac{1}{2}$ \therefore $n_b = 2n_a$ \therefore $n_b = 2(0,012) = 0,024$ mol

 $n_{b} = c_{b}V_{b} ~~{...}~0,024 = 0,53V_{b} ~~{...}~V_{b} ~= 0,046~dm^{3} = 46~cm^{3}I$

Question 4

4.1 Battery acid

4.2
$$pH = -log[H_3O^+] = 13,48$$

 $\therefore [H_3O^+] = 10^{-pH} = 10,^{-4,2} = 6,31 \times 10^{-5} \text{ mol} \cdot dm^{-3}$
 $K_w = [H_3O^+][OH^-] = 1,0 \times 10^{-14}$
 $\therefore [OH^-](6,31 \times 10^{-5}) = 1,0 \times 10^{-14}$
 $\therefore [OH^-] = 1,58 \times 10^{-10} \text{ mol} \cdot dm^{-3}$

4.3

- 4.3.1 Increases
- 4.3.2 Increases

Question 5

5.1 Acid ionises/dissociates (almost) completely in water.

5.2 $n(NaOH) = c_b V_b = (0,5)(28 \times 10^{-3}) = 0,014 \text{ mol}$ From balanced equation: $\frac{n_a}{n_b} = \frac{1}{1} \therefore n_a = n_b = 0,014 \text{ mol}$ $n(HC\ell \text{ originally}) = c_a V_a = (1)(50 \times 10^{-3}) = 0,05 \text{ mol}$ $n(HC\ell \text{ reacted with } CaCO_3) = 0,05 - 0,014 = 0,036 \text{ mol}$ $n(CaCO_3 \text{ reacted})$: From balanced equation: $\frac{n_a}{n_b} = \frac{2}{1} \therefore n_b = \frac{1}{2}n_a = \frac{1}{2}(0,036) = 0,018 \text{ mol}$ $n = \frac{m}{M} \therefore 0,01 = \frac{m}{286} \therefore m = 2,86 \text{ g}$

6.1

- 6.1.1 An acid that can donate two H^+ ions.
- 6.1.2 H₂SO₄; (COOH)₂; H₂S

6.2

6.2.1 pH = $-\log[H_3O^+] = -\log(1) = 0.1 \text{ mol} \cdot \text{dm}^{-3}$

- 6.2.2 Increase
- 6.3
- $\textbf{6.3.1} \quad \textbf{Na}_2\textbf{CO}_3 + 2\textbf{HCl} \rightarrow 2\textbf{NaCl} + \textbf{H}_2\textbf{O} + \textbf{CO}_2$
- 6.3.2 $n_a = c_a V_a = (0,1)(200 \times 10^{-3}) = 0,02 \text{ mol}$ From balanced equation: $\frac{n_a}{n_b} = \frac{2}{1} \therefore n_b = \frac{1}{2}n_a = \frac{1}{2}(0,02) = 0,01 \text{ mol}$ Mass CaCO₃: $n = \frac{m}{M} \therefore 0,01 = \frac{m}{286} \therefore m = 2,86 \text{ g}$
- 6.3.3 Methyl red
- 6.3.4 Titration of strong acid and weak base. pH at equivalence point is lower than 7/acidic which is in the colour change range of methyl red.

Question 7

When a solution of hydrochloric acid is added the concentration of $H_3O^+(aq)$ ions increases (common ion. The reverse reaction is favoured to reduce the $[H_3O^+(aq)]$. More $C_{20}H_{14}O_4(aq) + 2H_2O(\ell)$ are formed and the solution turns/ is colourless.

Question 8

8.1 $pH = -log[H_3O^+] = -log[3,2 \times 10^{-5}] = 4,49$ pH < 5,5 and therefore fish species will not survive.

8.2

- 8.2.1 $n_b = c_b V_b = (1,0)(100 \times 10^{-3}) = 100 \times 10^{-3} \text{ mol}$
- 8.2.2 $n_a = c_a V_a = (0,3)(45 \times 10^{-3}) = 0,0135 \text{ mol}$ From balanced equation: $\frac{n_a}{n_b} = \frac{1}{2} \therefore n_b = 2n_a = 2(0,0135) = 0,027 \text{ mol}$
- 8.2.3 n(NaOH used with NH₄Cℓ) = (0, 1 0, 027) = 0,073 mol But 1 mol NaOH reacts with 1 mol NH₄Cℓ ∴ 0,073 mol NaOH reacts with 0,073 mol NH₄Cℓ ∴ m (NH₄Cℓ) = nM = (0,073)(53,5) = 3,91 g
- 8.2.4 Bromothymol blue
- 8.2.5 The equivalence point of the titration of a strong acid (H_2SO_4) with a strong base (NaOH) is at pH = 7 which is within the colour change range of bromothymol blue.

9.1
$$c_b = \frac{m}{MV} = \frac{8}{(40)(350 \times 10^{-3})} = 0,57 \text{ mol} \cdot dm^{-3}$$

 $n_b = c_b V_b = (0,57)(15 \times 10^{-3}) = 8,57 \times 10^{-3} \text{ mol}$
From balanced equation: $\frac{n_a}{n_b} = \frac{1}{2} \therefore n_a = \frac{1}{2}n_b = \frac{1}{2}(8,57 \times 10^{-3}) = 4,29 \times 10^{-3} \text{ mol}$
 $c_a = \frac{n}{V} = \frac{4,29 \times 10^{-3}}{20 \times 10^{-3}} = 0,21 \text{ mol} \cdot dm^{-3}$

9.2

9.2.1 $HC\ell + H_2O \rightarrow H_3O^+ + C\ell^-$ HC\ell is a strong acid and ionises completely in water to form H_3O^+ ions that causes the pH to decrease.

- 9.2.2 $Na_2CO_3 + 2HC\ell \rightarrow 2NaC\ell + H_2O + CO_2$ $pH = -log[H_3O^+] = 4$ $\therefore [H_3O^+] = 10^{-pH} = 10^{-4} = 1 \times 10^{-4} \text{ mol} \cdot \text{dm}^{-3}$ $n_a = c_aV_a = (1 \times 10^{-4})(1) = 1 \times 10^{-4} \text{ mol}$ From balanced equation: $\frac{n_a}{n_b} = \frac{2}{1} \therefore n_b = \frac{1}{2}n_a = \frac{1}{2}(1 \times 10^{-4}) = 0.5 \times 10^{-4} \text{ mol}$ Mass CaCO₃: $n = \frac{m}{M} \therefore 0.5 \times 10^{-4} = \frac{m}{106} \therefore m = 5.3 \times 10^{-3} \text{ g}$
- 9.2.3 Increase salinity o water / Increase the salt concentration in water.